This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralnralall | |- ( A =/= (/) -> ( ( A. x e. A ph /\ A. x e. A -. ph ) -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | |- ( A. x e. A ( ph /\ -. ph ) <-> ( A. x e. A ph /\ A. x e. A -. ph ) ) |
|
| 2 | pm3.24 | |- -. ( ph /\ -. ph ) |
|
| 3 | 2 | bifal | |- ( ( ph /\ -. ph ) <-> F. ) |
| 4 | 3 | ralbii | |- ( A. x e. A ( ph /\ -. ph ) <-> A. x e. A F. ) |
| 5 | r19.3rzv | |- ( A =/= (/) -> ( F. <-> A. x e. A F. ) ) |
|
| 6 | falim | |- ( F. -> ps ) |
|
| 7 | 5 6 | biimtrrdi | |- ( A =/= (/) -> ( A. x e. A F. -> ps ) ) |
| 8 | 4 7 | biimtrid | |- ( A =/= (/) -> ( A. x e. A ( ph /\ -. ph ) -> ps ) ) |
| 9 | 1 8 | biimtrrid | |- ( A =/= (/) -> ( ( A. x e. A ph /\ A. x e. A -. ph ) -> ps ) ) |