This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bifal

Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015)

Ref Expression
Hypothesis bifal.1
|- -. ph
Assertion bifal
|- ( ph <-> F. )

Proof

Step Hyp Ref Expression
1 bifal.1
 |-  -. ph
2 fal
 |-  -. F.
3 1 2 2false
 |-  ( ph <-> F. )