This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ralima as of 14-Aug-2025. (Contributed by Stefan O'Rear, 21-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reximaOLD.x | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| Assertion | ralimaOLD | |- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximaOLD.x | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| 2 | fvexd | |- ( ( ( F Fn A /\ B C_ A ) /\ y e. B ) -> ( F ` y ) e. _V ) |
|
| 3 | fvelimab | |- ( ( F Fn A /\ B C_ A ) -> ( x e. ( F " B ) <-> E. y e. B ( F ` y ) = x ) ) |
|
| 4 | eqcom | |- ( ( F ` y ) = x <-> x = ( F ` y ) ) |
|
| 5 | 4 | rexbii | |- ( E. y e. B ( F ` y ) = x <-> E. y e. B x = ( F ` y ) ) |
| 6 | 3 5 | bitrdi | |- ( ( F Fn A /\ B C_ A ) -> ( x e. ( F " B ) <-> E. y e. B x = ( F ` y ) ) ) |
| 7 | 1 | adantl | |- ( ( ( F Fn A /\ B C_ A ) /\ x = ( F ` y ) ) -> ( ph <-> ps ) ) |
| 8 | 2 6 7 | ralxfr2d | |- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) ) |