This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusin.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusin.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusin.e | |- ( ph -> .~ e. W ) |
||
| qusin.r | |- ( ph -> R e. Z ) |
||
| qusin.s | |- ( ph -> ( .~ " V ) C_ V ) |
||
| Assertion | qusin | |- ( ph -> U = ( R /s ( .~ i^i ( V X. V ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusin.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusin.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusin.e | |- ( ph -> .~ e. W ) |
|
| 4 | qusin.r | |- ( ph -> R e. Z ) |
|
| 5 | qusin.s | |- ( ph -> ( .~ " V ) C_ V ) |
|
| 6 | ecinxp | |- ( ( ( .~ " V ) C_ V /\ x e. V ) -> [ x ] .~ = [ x ] ( .~ i^i ( V X. V ) ) ) |
|
| 7 | 5 6 | sylan | |- ( ( ph /\ x e. V ) -> [ x ] .~ = [ x ] ( .~ i^i ( V X. V ) ) ) |
| 8 | 7 | mpteq2dva | |- ( ph -> ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) ) |
| 9 | 8 | oveq1d | |- ( ph -> ( ( x e. V |-> [ x ] .~ ) "s R ) = ( ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) "s R ) ) |
| 10 | eqid | |- ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ ) |
|
| 11 | 1 2 10 3 4 | qusval | |- ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) ) |
| 12 | eqidd | |- ( ph -> ( R /s ( .~ i^i ( V X. V ) ) ) = ( R /s ( .~ i^i ( V X. V ) ) ) ) |
|
| 13 | eqid | |- ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) = ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) |
|
| 14 | inex1g | |- ( .~ e. W -> ( .~ i^i ( V X. V ) ) e. _V ) |
|
| 15 | 3 14 | syl | |- ( ph -> ( .~ i^i ( V X. V ) ) e. _V ) |
| 16 | 12 2 13 15 4 | qusval | |- ( ph -> ( R /s ( .~ i^i ( V X. V ) ) ) = ( ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) "s R ) ) |
| 17 | 9 11 16 | 3eqtr4d | |- ( ph -> U = ( R /s ( .~ i^i ( V X. V ) ) ) ) |