This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qmuldeneqnum | |- ( A e. QQ -> ( A x. ( denom ` A ) ) = ( numer ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qeqnumdivden | |- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
|
| 2 | 1 | oveq1d | |- ( A e. QQ -> ( A x. ( denom ` A ) ) = ( ( ( numer ` A ) / ( denom ` A ) ) x. ( denom ` A ) ) ) |
| 3 | qnumcl | |- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
|
| 4 | 3 | zcnd | |- ( A e. QQ -> ( numer ` A ) e. CC ) |
| 5 | qdencl | |- ( A e. QQ -> ( denom ` A ) e. NN ) |
|
| 6 | 5 | nncnd | |- ( A e. QQ -> ( denom ` A ) e. CC ) |
| 7 | 5 | nnne0d | |- ( A e. QQ -> ( denom ` A ) =/= 0 ) |
| 8 | 4 6 7 | divcan1d | |- ( A e. QQ -> ( ( ( numer ` A ) / ( denom ` A ) ) x. ( denom ` A ) ) = ( numer ` A ) ) |
| 9 | 2 8 | eqtrd | |- ( A e. QQ -> ( A x. ( denom ` A ) ) = ( numer ` A ) ) |