This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
| qlift.3 | |- ( ph -> R Er X ) |
||
| qlift.4 | |- ( ph -> X e. V ) |
||
| Assertion | qliftfuns | |- ( ph -> ( Fun F <-> A. y A. z ( y R z -> [_ y / x ]_ A = [_ z / x ]_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| 2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
| 3 | qlift.3 | |- ( ph -> R Er X ) |
|
| 4 | qlift.4 | |- ( ph -> X e. V ) |
|
| 5 | nfcv | |- F/_ y <. [ x ] R , A >. |
|
| 6 | nfcv | |- F/_ x [ y ] R |
|
| 7 | nfcsb1v | |- F/_ x [_ y / x ]_ A |
|
| 8 | 6 7 | nfop | |- F/_ x <. [ y ] R , [_ y / x ]_ A >. |
| 9 | eceq1 | |- ( x = y -> [ x ] R = [ y ] R ) |
|
| 10 | csbeq1a | |- ( x = y -> A = [_ y / x ]_ A ) |
|
| 11 | 9 10 | opeq12d | |- ( x = y -> <. [ x ] R , A >. = <. [ y ] R , [_ y / x ]_ A >. ) |
| 12 | 5 8 11 | cbvmpt | |- ( x e. X |-> <. [ x ] R , A >. ) = ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) |
| 13 | 12 | rneqi | |- ran ( x e. X |-> <. [ x ] R , A >. ) = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) |
| 14 | 1 13 | eqtri | |- F = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) |
| 15 | 2 | ralrimiva | |- ( ph -> A. x e. X A e. Y ) |
| 16 | 7 | nfel1 | |- F/ x [_ y / x ]_ A e. Y |
| 17 | 10 | eleq1d | |- ( x = y -> ( A e. Y <-> [_ y / x ]_ A e. Y ) ) |
| 18 | 16 17 | rspc | |- ( y e. X -> ( A. x e. X A e. Y -> [_ y / x ]_ A e. Y ) ) |
| 19 | 15 18 | mpan9 | |- ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. Y ) |
| 20 | csbeq1 | |- ( y = z -> [_ y / x ]_ A = [_ z / x ]_ A ) |
|
| 21 | 14 19 3 4 20 | qliftfun | |- ( ph -> ( Fun F <-> A. y A. z ( y R z -> [_ y / x ]_ A = [_ z / x ]_ A ) ) ) |