This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
| qlift.3 | |- ( ph -> R Er X ) |
||
| qlift.4 | |- ( ph -> X e. V ) |
||
| qliftfun.4 | |- ( x = y -> A = B ) |
||
| Assertion | qliftfun | |- ( ph -> ( Fun F <-> A. x A. y ( x R y -> A = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| 2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
| 3 | qlift.3 | |- ( ph -> R Er X ) |
|
| 4 | qlift.4 | |- ( ph -> X e. V ) |
|
| 5 | qliftfun.4 | |- ( x = y -> A = B ) |
|
| 6 | 1 2 3 4 | qliftlem | |- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
| 7 | eceq1 | |- ( x = y -> [ x ] R = [ y ] R ) |
|
| 8 | 1 6 2 7 5 | fliftfun | |- ( ph -> ( Fun F <-> A. x e. X A. y e. X ( [ x ] R = [ y ] R -> A = B ) ) ) |
| 9 | 3 | adantr | |- ( ( ph /\ x R y ) -> R Er X ) |
| 10 | simpr | |- ( ( ph /\ x R y ) -> x R y ) |
|
| 11 | 9 10 | ercl | |- ( ( ph /\ x R y ) -> x e. X ) |
| 12 | 9 10 | ercl2 | |- ( ( ph /\ x R y ) -> y e. X ) |
| 13 | 11 12 | jca | |- ( ( ph /\ x R y ) -> ( x e. X /\ y e. X ) ) |
| 14 | 13 | ex | |- ( ph -> ( x R y -> ( x e. X /\ y e. X ) ) ) |
| 15 | 14 | pm4.71rd | |- ( ph -> ( x R y <-> ( ( x e. X /\ y e. X ) /\ x R y ) ) ) |
| 16 | 3 | adantr | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> R Er X ) |
| 17 | simprl | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
|
| 18 | 16 17 | erth | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x R y <-> [ x ] R = [ y ] R ) ) |
| 19 | 18 | pm5.32da | |- ( ph -> ( ( ( x e. X /\ y e. X ) /\ x R y ) <-> ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) ) ) |
| 20 | 15 19 | bitrd | |- ( ph -> ( x R y <-> ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) ) ) |
| 21 | 20 | imbi1d | |- ( ph -> ( ( x R y -> A = B ) <-> ( ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) -> A = B ) ) ) |
| 22 | impexp | |- ( ( ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) -> A = B ) <-> ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) |
|
| 23 | 21 22 | bitrdi | |- ( ph -> ( ( x R y -> A = B ) <-> ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) ) |
| 24 | 23 | 2albidv | |- ( ph -> ( A. x A. y ( x R y -> A = B ) <-> A. x A. y ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) ) |
| 25 | r2al | |- ( A. x e. X A. y e. X ( [ x ] R = [ y ] R -> A = B ) <-> A. x A. y ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) |
|
| 26 | 24 25 | bitr4di | |- ( ph -> ( A. x A. y ( x R y -> A = B ) <-> A. x e. X A. y e. X ( [ x ] R = [ y ] R -> A = B ) ) ) |
| 27 | 8 26 | bitr4d | |- ( ph -> ( Fun F <-> A. x A. y ( x R y -> A = B ) ) ) |