This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | ||
| qlift.2 | |||
| qlift.3 | |||
| qlift.4 | |||
| Assertion | qliftfuns |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | ||
| 2 | qlift.2 | ||
| 3 | qlift.3 | ||
| 4 | qlift.4 | ||
| 5 | nfcv | ||
| 6 | nfcv | ||
| 7 | nfcsb1v | ||
| 8 | 6 7 | nfop | |
| 9 | eceq1 | ||
| 10 | csbeq1a | ||
| 11 | 9 10 | opeq12d | |
| 12 | 5 8 11 | cbvmpt | |
| 13 | 12 | rneqi | |
| 14 | 1 13 | eqtri | |
| 15 | 2 | ralrimiva | |
| 16 | 7 | nfel1 | |
| 17 | 10 | eleq1d | |
| 18 | 16 17 | rspc | |
| 19 | 15 18 | mpan9 | |
| 20 | csbeq1 | ||
| 21 | 14 19 3 4 20 | qliftfun |