This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qrevaddcl | |- ( B e. QQ -> ( ( A e. CC /\ ( A + B ) e. QQ ) <-> A e. QQ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 2 | pncan | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ B e. QQ ) -> ( ( A + B ) - B ) = A ) |
| 4 | 3 | ancoms | |- ( ( B e. QQ /\ A e. CC ) -> ( ( A + B ) - B ) = A ) |
| 5 | 4 | adantr | |- ( ( ( B e. QQ /\ A e. CC ) /\ ( A + B ) e. QQ ) -> ( ( A + B ) - B ) = A ) |
| 6 | qsubcl | |- ( ( ( A + B ) e. QQ /\ B e. QQ ) -> ( ( A + B ) - B ) e. QQ ) |
|
| 7 | 6 | ancoms | |- ( ( B e. QQ /\ ( A + B ) e. QQ ) -> ( ( A + B ) - B ) e. QQ ) |
| 8 | 7 | adantlr | |- ( ( ( B e. QQ /\ A e. CC ) /\ ( A + B ) e. QQ ) -> ( ( A + B ) - B ) e. QQ ) |
| 9 | 5 8 | eqeltrrd | |- ( ( ( B e. QQ /\ A e. CC ) /\ ( A + B ) e. QQ ) -> A e. QQ ) |
| 10 | 9 | ex | |- ( ( B e. QQ /\ A e. CC ) -> ( ( A + B ) e. QQ -> A e. QQ ) ) |
| 11 | qaddcl | |- ( ( A e. QQ /\ B e. QQ ) -> ( A + B ) e. QQ ) |
|
| 12 | 11 | expcom | |- ( B e. QQ -> ( A e. QQ -> ( A + B ) e. QQ ) ) |
| 13 | 12 | adantr | |- ( ( B e. QQ /\ A e. CC ) -> ( A e. QQ -> ( A + B ) e. QQ ) ) |
| 14 | 10 13 | impbid | |- ( ( B e. QQ /\ A e. CC ) -> ( ( A + B ) e. QQ <-> A e. QQ ) ) |
| 15 | 14 | pm5.32da | |- ( B e. QQ -> ( ( A e. CC /\ ( A + B ) e. QQ ) <-> ( A e. CC /\ A e. QQ ) ) ) |
| 16 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 17 | 16 | pm4.71ri | |- ( A e. QQ <-> ( A e. CC /\ A e. QQ ) ) |
| 18 | 15 17 | bitr4di | |- ( B e. QQ -> ( ( A e. CC /\ ( A + B ) e. QQ ) <-> A e. QQ ) ) |