This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a componentwise ring product in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
| prdsplusgval.f | |- ( ph -> F e. B ) |
||
| prdsplusgval.g | |- ( ph -> G e. B ) |
||
| prdsmulrval.t | |- .x. = ( .r ` Y ) |
||
| Assertion | prdsmulrval | |- ( ph -> ( F .x. G ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
| 6 | prdsplusgval.f | |- ( ph -> F e. B ) |
|
| 7 | prdsplusgval.g | |- ( ph -> G e. B ) |
|
| 8 | prdsmulrval.t | |- .x. = ( .r ` Y ) |
|
| 9 | fnex | |- ( ( R Fn I /\ I e. W ) -> R e. _V ) |
|
| 10 | 5 4 9 | syl2anc | |- ( ph -> R e. _V ) |
| 11 | 5 | fndmd | |- ( ph -> dom R = I ) |
| 12 | 1 3 10 2 11 8 | prdsmulr | |- ( ph -> .x. = ( y e. B , z e. B |-> ( x e. I |-> ( ( y ` x ) ( .r ` ( R ` x ) ) ( z ` x ) ) ) ) ) |
| 13 | fveq1 | |- ( y = F -> ( y ` x ) = ( F ` x ) ) |
|
| 14 | fveq1 | |- ( z = G -> ( z ` x ) = ( G ` x ) ) |
|
| 15 | 13 14 | oveqan12d | |- ( ( y = F /\ z = G ) -> ( ( y ` x ) ( .r ` ( R ` x ) ) ( z ` x ) ) = ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) |
| 16 | 15 | adantl | |- ( ( ph /\ ( y = F /\ z = G ) ) -> ( ( y ` x ) ( .r ` ( R ` x ) ) ( z ` x ) ) = ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) |
| 17 | 16 | mpteq2dv | |- ( ( ph /\ ( y = F /\ z = G ) ) -> ( x e. I |-> ( ( y ` x ) ( .r ` ( R ` x ) ) ( z ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 18 | 4 | mptexd | |- ( ph -> ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) e. _V ) |
| 19 | 12 17 6 7 18 | ovmpod | |- ( ph -> ( F .x. G ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ) |