This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fdiagfn.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
| Assertion | fdiagfn | |- ( ( B e. V /\ I e. W ) -> F : B --> ( B ^m I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdiagfn.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
| 2 | fconst6g | |- ( x e. B -> ( I X. { x } ) : I --> B ) |
|
| 3 | 2 | adantl | |- ( ( ( B e. V /\ I e. W ) /\ x e. B ) -> ( I X. { x } ) : I --> B ) |
| 4 | elmapg | |- ( ( B e. V /\ I e. W ) -> ( ( I X. { x } ) e. ( B ^m I ) <-> ( I X. { x } ) : I --> B ) ) |
|
| 5 | 4 | adantr | |- ( ( ( B e. V /\ I e. W ) /\ x e. B ) -> ( ( I X. { x } ) e. ( B ^m I ) <-> ( I X. { x } ) : I --> B ) ) |
| 6 | 3 5 | mpbird | |- ( ( ( B e. V /\ I e. W ) /\ x e. B ) -> ( I X. { x } ) e. ( B ^m I ) ) |
| 7 | 6 1 | fmptd | |- ( ( B e. V /\ I e. W ) -> F : B --> ( B ^m I ) ) |