This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure power on an Abelian group is Abelian. (Contributed by Mario Carneiro, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwscmn.y | |- Y = ( R ^s I ) |
|
| Assertion | pwsabl | |- ( ( R e. Abel /\ I e. V ) -> Y e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwscmn.y | |- Y = ( R ^s I ) |
|
| 2 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 3 | 1 2 | pwsval | |- ( ( R e. Abel /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 4 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 5 | simpr | |- ( ( R e. Abel /\ I e. V ) -> I e. V ) |
|
| 6 | fvexd | |- ( ( R e. Abel /\ I e. V ) -> ( Scalar ` R ) e. _V ) |
|
| 7 | fconst6g | |- ( R e. Abel -> ( I X. { R } ) : I --> Abel ) |
|
| 8 | 7 | adantr | |- ( ( R e. Abel /\ I e. V ) -> ( I X. { R } ) : I --> Abel ) |
| 9 | 4 5 6 8 | prdsabld | |- ( ( R e. Abel /\ I e. V ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. Abel ) |
| 10 | 3 9 | eqeltrd | |- ( ( R e. Abel /\ I e. V ) -> Y e. Abel ) |