This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure power on an Abelian group is Abelian. (Contributed by Mario Carneiro, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwscmn.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| Assertion | pwsabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwscmn.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 3 | 1 2 | pwsval | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 4 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 5 | simpr | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) | |
| 6 | fvexd | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 7 | fconst6g | ⊢ ( 𝑅 ∈ Abel → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Abel ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Abel ) |
| 9 | 4 5 6 8 | prdsabld | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ∈ Abel ) |
| 10 | 3 9 | eqeltrd | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Abel ) |