This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation of the monoid of the power set of a class A under union. (Contributed by AV, 27-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwmnd.b | |- ( Base ` M ) = ~P A |
|
| pwmnd.p | |- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
||
| Assertion | pwmndgplus | |- ( ( X e. ~P A /\ Y e. ~P A ) -> ( X ( +g ` M ) Y ) = ( X u. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwmnd.b | |- ( Base ` M ) = ~P A |
|
| 2 | pwmnd.p | |- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
|
| 3 | 2 | a1i | |- ( ( X e. ~P A /\ Y e. ~P A ) -> ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) ) |
| 4 | uneq12 | |- ( ( x = X /\ y = Y ) -> ( x u. y ) = ( X u. Y ) ) |
|
| 5 | 4 | adantl | |- ( ( ( X e. ~P A /\ Y e. ~P A ) /\ ( x = X /\ y = Y ) ) -> ( x u. y ) = ( X u. Y ) ) |
| 6 | simpl | |- ( ( X e. ~P A /\ Y e. ~P A ) -> X e. ~P A ) |
|
| 7 | simpr | |- ( ( X e. ~P A /\ Y e. ~P A ) -> Y e. ~P A ) |
|
| 8 | unexg | |- ( ( X e. ~P A /\ Y e. ~P A ) -> ( X u. Y ) e. _V ) |
|
| 9 | 3 5 6 7 8 | ovmpod | |- ( ( X e. ~P A /\ Y e. ~P A ) -> ( X ( +g ` M ) Y ) = ( X u. Y ) ) |