This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the pw2f1o2 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pw2f1o2.f | |- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) |
|
| Assertion | pw2f1o2val | |- ( X e. ( 2o ^m A ) -> ( F ` X ) = ( `' X " { 1o } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o2.f | |- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) |
|
| 2 | cnvexg | |- ( X e. ( 2o ^m A ) -> `' X e. _V ) |
|
| 3 | imaexg | |- ( `' X e. _V -> ( `' X " { 1o } ) e. _V ) |
|
| 4 | 2 3 | syl | |- ( X e. ( 2o ^m A ) -> ( `' X " { 1o } ) e. _V ) |
| 5 | cnveq | |- ( x = X -> `' x = `' X ) |
|
| 6 | 5 | imaeq1d | |- ( x = X -> ( `' x " { 1o } ) = ( `' X " { 1o } ) ) |
| 7 | 6 1 | fvmptg | |- ( ( X e. ( 2o ^m A ) /\ ( `' X " { 1o } ) e. _V ) -> ( F ` X ) = ( `' X " { 1o } ) ) |
| 8 | 4 7 | mpdan | |- ( X e. ( 2o ^m A ) -> ( F ` X ) = ( `' X " { 1o } ) ) |