This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path is a path between its endpoints. (Contributed by AV, 31-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthonpth | |- ( F ( Paths ` G ) P -> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthistrl | |- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
|
| 2 | trlontrl | |- ( F ( Trails ` G ) P -> F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
|
| 3 | 1 2 | syl | |- ( F ( Paths ` G ) P -> F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
| 4 | id | |- ( F ( Paths ` G ) P -> F ( Paths ` G ) P ) |
|
| 5 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 6 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 7 | 6 | wlkepvtx | |- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) ) |
| 8 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 9 | 3simpc | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. _V /\ P e. _V ) ) |
|
| 10 | 8 9 | syl | |- ( F ( Walks ` G ) P -> ( F e. _V /\ P e. _V ) ) |
| 11 | 7 10 | jca | |- ( F ( Walks ` G ) P -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 12 | 6 | ispthson | |- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Paths ` G ) P ) ) ) |
| 13 | 5 11 12 | 3syl | |- ( F ( Paths ` G ) P -> ( F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Paths ` G ) P ) ) ) |
| 14 | 3 4 13 | mpbir2and | |- ( F ( Paths ` G ) P -> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P ) |