This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trail is a trail between its endpoints. (Contributed by AV, 31-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trlontrl | |- ( F ( Trails ` G ) P -> F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 2 | wlkonwlk | |- ( F ( Walks ` G ) P -> F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P ) |
|
| 3 | 1 2 | syl | |- ( F ( Trails ` G ) P -> F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P ) |
| 4 | id | |- ( F ( Trails ` G ) P -> F ( Trails ` G ) P ) |
|
| 5 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 6 | 5 | wlkepvtx | |- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) ) |
| 7 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 8 | 3simpc | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. _V /\ P e. _V ) ) |
|
| 9 | 8 | anim2i | |- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( G e. _V /\ F e. _V /\ P e. _V ) ) -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 10 | 6 7 9 | syl2anc | |- ( F ( Walks ` G ) P -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 11 | 1 10 | syl | |- ( F ( Trails ` G ) P -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 12 | 5 | istrlson | |- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Trails ` G ) P ) ) ) |
| 13 | 11 12 | syl | |- ( F ( Trails ` G ) P -> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Trails ` G ) P ) ) ) |
| 14 | 3 4 13 | mpbir2and | |- ( F ( Trails ` G ) P -> F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P ) |