This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 16-Jan-2021) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pthsonfval.v | |- V = ( Vtx ` G ) |
|
| Assertion | ispthson | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. U /\ P e. Z ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthsonfval.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | pthsonfval | |- ( ( A e. V /\ B e. V ) -> ( A ( PathsOn ` G ) B ) = { <. f , p >. | ( f ( A ( TrailsOn ` G ) B ) p /\ f ( Paths ` G ) p ) } ) |
| 3 | 2 | breqd | |- ( ( A e. V /\ B e. V ) -> ( F ( A ( PathsOn ` G ) B ) P <-> F { <. f , p >. | ( f ( A ( TrailsOn ` G ) B ) p /\ f ( Paths ` G ) p ) } P ) ) |
| 4 | breq12 | |- ( ( f = F /\ p = P ) -> ( f ( A ( TrailsOn ` G ) B ) p <-> F ( A ( TrailsOn ` G ) B ) P ) ) |
|
| 5 | breq12 | |- ( ( f = F /\ p = P ) -> ( f ( Paths ` G ) p <-> F ( Paths ` G ) P ) ) |
|
| 6 | 4 5 | anbi12d | |- ( ( f = F /\ p = P ) -> ( ( f ( A ( TrailsOn ` G ) B ) p /\ f ( Paths ` G ) p ) <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
| 7 | eqid | |- { <. f , p >. | ( f ( A ( TrailsOn ` G ) B ) p /\ f ( Paths ` G ) p ) } = { <. f , p >. | ( f ( A ( TrailsOn ` G ) B ) p /\ f ( Paths ` G ) p ) } |
|
| 8 | 6 7 | brabga | |- ( ( F e. U /\ P e. Z ) -> ( F { <. f , p >. | ( f ( A ( TrailsOn ` G ) B ) p /\ f ( Paths ` G ) p ) } P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
| 9 | 3 8 | sylan9bb | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. U /\ P e. Z ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |