This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ptcmp | |- ( ( A e. V /\ F : A --> Comp ) -> ( Xt_ ` F ) e. Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( Xt_ ` F ) e. _V |
|
| 2 | 1 | uniex | |- U. ( Xt_ ` F ) e. _V |
| 3 | axac3 | |- CHOICE |
|
| 4 | acufl | |- ( CHOICE -> UFL = _V ) |
|
| 5 | 3 4 | ax-mp | |- UFL = _V |
| 6 | 2 5 | eleqtrri | |- U. ( Xt_ ` F ) e. UFL |
| 7 | cardeqv | |- dom card = _V |
|
| 8 | 2 7 | eleqtrri | |- U. ( Xt_ ` F ) e. dom card |
| 9 | 6 8 | elini | |- U. ( Xt_ ` F ) e. ( UFL i^i dom card ) |
| 10 | eqid | |- ( Xt_ ` F ) = ( Xt_ ` F ) |
|
| 11 | eqid | |- U. ( Xt_ ` F ) = U. ( Xt_ ` F ) |
|
| 12 | 10 11 | ptcmpg | |- ( ( A e. V /\ F : A --> Comp /\ U. ( Xt_ ` F ) e. ( UFL i^i dom card ) ) -> ( Xt_ ` F ) e. Comp ) |
| 13 | 9 12 | mp3an3 | |- ( ( A e. V /\ F : A --> Comp ) -> ( Xt_ ` F ) e. Comp ) |