This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset is reflexive. (Contributed by NM, 13-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psref.1 | |- X = dom R |
|
| Assertion | psref | |- ( ( R e. PosetRel /\ A e. X ) -> A R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psref.1 | |- X = dom R |
|
| 2 | psdmrn | |- ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) ) |
|
| 3 | 2 | simpld | |- ( R e. PosetRel -> dom R = U. U. R ) |
| 4 | 1 3 | eqtrid | |- ( R e. PosetRel -> X = U. U. R ) |
| 5 | 4 | eleq2d | |- ( R e. PosetRel -> ( A e. X <-> A e. U. U. R ) ) |
| 6 | pslem | |- ( R e. PosetRel -> ( ( ( A R A /\ A R A ) -> A R A ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R A /\ A R A ) -> A = A ) ) ) |
|
| 7 | 6 | simp2d | |- ( R e. PosetRel -> ( A e. U. U. R -> A R A ) ) |
| 8 | 5 7 | sylbid | |- ( R e. PosetRel -> ( A e. X -> A R A ) ) |
| 9 | 8 | imp | |- ( ( R e. PosetRel /\ A e. X ) -> A R A ) |