This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psdmrn | |- ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | |- dom R C_ ( dom R u. ran R ) |
|
| 2 | dmrnssfld | |- ( dom R u. ran R ) C_ U. U. R |
|
| 3 | 1 2 | sstri | |- dom R C_ U. U. R |
| 4 | 3 | a1i | |- ( R e. PosetRel -> dom R C_ U. U. R ) |
| 5 | pslem | |- ( R e. PosetRel -> ( ( ( x R x /\ x R x ) -> x R x ) /\ ( x e. U. U. R -> x R x ) /\ ( ( x R x /\ x R x ) -> x = x ) ) ) |
|
| 6 | 5 | simp2d | |- ( R e. PosetRel -> ( x e. U. U. R -> x R x ) ) |
| 7 | vex | |- x e. _V |
|
| 8 | 7 7 | breldm | |- ( x R x -> x e. dom R ) |
| 9 | 6 8 | syl6 | |- ( R e. PosetRel -> ( x e. U. U. R -> x e. dom R ) ) |
| 10 | 9 | ssrdv | |- ( R e. PosetRel -> U. U. R C_ dom R ) |
| 11 | 4 10 | eqssd | |- ( R e. PosetRel -> dom R = U. U. R ) |
| 12 | ssun2 | |- ran R C_ ( dom R u. ran R ) |
|
| 13 | 12 2 | sstri | |- ran R C_ U. U. R |
| 14 | 13 | a1i | |- ( R e. PosetRel -> ran R C_ U. U. R ) |
| 15 | 7 7 | brelrn | |- ( x R x -> x e. ran R ) |
| 16 | 6 15 | syl6 | |- ( R e. PosetRel -> ( x e. U. U. R -> x e. ran R ) ) |
| 17 | 16 | ssrdv | |- ( R e. PosetRel -> U. U. R C_ ran R ) |
| 18 | 14 17 | eqssd | |- ( R e. PosetRel -> ran R = U. U. R ) |
| 19 | 11 18 | jca | |- ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) ) |