This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psref and others. (Contributed by NM, 12-May-2008) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pslem | |- ( R e. PosetRel -> ( ( ( A R B /\ B R C ) -> A R C ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R B /\ B R A ) -> A = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrel | |- ( R e. PosetRel -> Rel R ) |
|
| 2 | brrelex12 | |- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
|
| 3 | 1 2 | sylan | |- ( ( R e. PosetRel /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
| 4 | brrelex2 | |- ( ( Rel R /\ B R C ) -> C e. _V ) |
|
| 5 | 1 4 | sylan | |- ( ( R e. PosetRel /\ B R C ) -> C e. _V ) |
| 6 | 3 5 | anim12dan | |- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> ( ( A e. _V /\ B e. _V ) /\ C e. _V ) ) |
| 7 | pstr2 | |- ( R e. PosetRel -> ( R o. R ) C_ R ) |
|
| 8 | cotr | |- ( ( R o. R ) C_ R <-> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) |
|
| 9 | 7 8 | sylib | |- ( R e. PosetRel -> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) |
| 10 | 9 | adantr | |- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) |
| 11 | simpr | |- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> ( A R B /\ B R C ) ) |
|
| 12 | breq12 | |- ( ( x = A /\ y = B ) -> ( x R y <-> A R B ) ) |
|
| 13 | 12 | 3adant3 | |- ( ( x = A /\ y = B /\ z = C ) -> ( x R y <-> A R B ) ) |
| 14 | breq12 | |- ( ( y = B /\ z = C ) -> ( y R z <-> B R C ) ) |
|
| 15 | 14 | 3adant1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( y R z <-> B R C ) ) |
| 16 | 13 15 | anbi12d | |- ( ( x = A /\ y = B /\ z = C ) -> ( ( x R y /\ y R z ) <-> ( A R B /\ B R C ) ) ) |
| 17 | breq12 | |- ( ( x = A /\ z = C ) -> ( x R z <-> A R C ) ) |
|
| 18 | 17 | 3adant2 | |- ( ( x = A /\ y = B /\ z = C ) -> ( x R z <-> A R C ) ) |
| 19 | 16 18 | imbi12d | |- ( ( x = A /\ y = B /\ z = C ) -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( A R B /\ B R C ) -> A R C ) ) ) |
| 20 | 19 | spc3gv | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
| 21 | 20 | 3expa | |- ( ( ( A e. _V /\ B e. _V ) /\ C e. _V ) -> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
| 22 | 6 10 11 21 | syl3c | |- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> A R C ) |
| 23 | 22 | ex | |- ( R e. PosetRel -> ( ( A R B /\ B R C ) -> A R C ) ) |
| 24 | psref2 | |- ( R e. PosetRel -> ( R i^i `' R ) = ( _I |` U. U. R ) ) |
|
| 25 | asymref2 | |- ( ( R i^i `' R ) = ( _I |` U. U. R ) <-> ( A. x e. U. U. R x R x /\ A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) ) |
|
| 26 | 25 | simplbi | |- ( ( R i^i `' R ) = ( _I |` U. U. R ) -> A. x e. U. U. R x R x ) |
| 27 | breq12 | |- ( ( x = A /\ x = A ) -> ( x R x <-> A R A ) ) |
|
| 28 | 27 | anidms | |- ( x = A -> ( x R x <-> A R A ) ) |
| 29 | 28 | rspccv | |- ( A. x e. U. U. R x R x -> ( A e. U. U. R -> A R A ) ) |
| 30 | 24 26 29 | 3syl | |- ( R e. PosetRel -> ( A e. U. U. R -> A R A ) ) |
| 31 | 3 | adantrr | |- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> ( A e. _V /\ B e. _V ) ) |
| 32 | 25 | simprbi | |- ( ( R i^i `' R ) = ( _I |` U. U. R ) -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
| 33 | 24 32 | syl | |- ( R e. PosetRel -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
| 34 | 33 | adantr | |- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
| 35 | simpr | |- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> ( A R B /\ B R A ) ) |
|
| 36 | breq12 | |- ( ( y = B /\ x = A ) -> ( y R x <-> B R A ) ) |
|
| 37 | 36 | ancoms | |- ( ( x = A /\ y = B ) -> ( y R x <-> B R A ) ) |
| 38 | 12 37 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( x R y /\ y R x ) <-> ( A R B /\ B R A ) ) ) |
| 39 | eqeq12 | |- ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) ) |
|
| 40 | 38 39 | imbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( x R y /\ y R x ) -> x = y ) <-> ( ( A R B /\ B R A ) -> A = B ) ) ) |
| 41 | 40 | spc2gv | |- ( ( A e. _V /\ B e. _V ) -> ( A. x A. y ( ( x R y /\ y R x ) -> x = y ) -> ( ( A R B /\ B R A ) -> A = B ) ) ) |
| 42 | 31 34 35 41 | syl3c | |- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> A = B ) |
| 43 | 42 | ex | |- ( R e. PosetRel -> ( ( A R B /\ B R A ) -> A = B ) ) |
| 44 | 23 30 43 | 3jca | |- ( R e. PosetRel -> ( ( ( A R B /\ B R C ) -> A R C ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R B /\ B R A ) -> A = B ) ) ) |