This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm1.4

Description: Axiom *1.4 of WhiteheadRussell p. 96. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm1.4
|- ( ( ph \/ ps ) -> ( ps \/ ph ) )

Proof

Step Hyp Ref Expression
1 olc
 |-  ( ph -> ( ps \/ ph ) )
2 orc
 |-  ( ps -> ( ps \/ ph ) )
3 1 2 jaoi
 |-  ( ( ph \/ ps ) -> ( ps \/ ph ) )