This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orddi | |- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ( ph \/ ch ) /\ ( ph \/ th ) ) /\ ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordir | |- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ph \/ ( ch /\ th ) ) /\ ( ps \/ ( ch /\ th ) ) ) ) |
|
| 2 | ordi | |- ( ( ph \/ ( ch /\ th ) ) <-> ( ( ph \/ ch ) /\ ( ph \/ th ) ) ) |
|
| 3 | ordi | |- ( ( ps \/ ( ch /\ th ) ) <-> ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) |
|
| 4 | 2 3 | anbi12i | |- ( ( ( ph \/ ( ch /\ th ) ) /\ ( ps \/ ( ch /\ th ) ) ) <-> ( ( ( ph \/ ch ) /\ ( ph \/ th ) ) /\ ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) ) |
| 5 | 1 4 | bitri | |- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ( ph \/ ch ) /\ ( ph \/ th ) ) /\ ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) ) |