This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pr1eqbg | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> ( A = C <-> { A , B } = { B , C } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- B = B |
|
| 2 | 1 | biantru | |- ( A = C <-> ( A = C /\ B = B ) ) |
| 3 | 2 | orbi2i | |- ( ( ( A = B /\ B = C ) \/ A = C ) <-> ( ( A = B /\ B = C ) \/ ( A = C /\ B = B ) ) ) |
| 4 | 3 | a1i | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> ( ( ( A = B /\ B = C ) \/ A = C ) <-> ( ( A = B /\ B = C ) \/ ( A = C /\ B = B ) ) ) ) |
| 5 | neneq | |- ( A =/= B -> -. A = B ) |
|
| 6 | 5 | adantl | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> -. A = B ) |
| 7 | 6 | intnanrd | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> -. ( A = B /\ B = C ) ) |
| 8 | biorf | |- ( -. ( A = B /\ B = C ) -> ( A = C <-> ( ( A = B /\ B = C ) \/ A = C ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> ( A = C <-> ( ( A = B /\ B = C ) \/ A = C ) ) ) |
| 10 | 3simpa | |- ( ( A e. U /\ B e. V /\ C e. X ) -> ( A e. U /\ B e. V ) ) |
|
| 11 | 3simpc | |- ( ( A e. U /\ B e. V /\ C e. X ) -> ( B e. V /\ C e. X ) ) |
|
| 12 | 10 11 | jca | |- ( ( A e. U /\ B e. V /\ C e. X ) -> ( ( A e. U /\ B e. V ) /\ ( B e. V /\ C e. X ) ) ) |
| 13 | 12 | adantr | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> ( ( A e. U /\ B e. V ) /\ ( B e. V /\ C e. X ) ) ) |
| 14 | preq12bg | |- ( ( ( A e. U /\ B e. V ) /\ ( B e. V /\ C e. X ) ) -> ( { A , B } = { B , C } <-> ( ( A = B /\ B = C ) \/ ( A = C /\ B = B ) ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> ( { A , B } = { B , C } <-> ( ( A = B /\ B = C ) \/ ( A = C /\ B = B ) ) ) ) |
| 16 | 4 9 15 | 3bitr4d | |- ( ( ( A e. U /\ B e. V /\ C e. X ) /\ A =/= B ) -> ( A = C <-> { A , B } = { B , C } ) ) |