This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anddi | |- ( ( ( ph \/ ps ) /\ ( ch \/ th ) ) <-> ( ( ( ph /\ ch ) \/ ( ph /\ th ) ) \/ ( ( ps /\ ch ) \/ ( ps /\ th ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andir | |- ( ( ( ph \/ ps ) /\ ( ch \/ th ) ) <-> ( ( ph /\ ( ch \/ th ) ) \/ ( ps /\ ( ch \/ th ) ) ) ) |
|
| 2 | andi | |- ( ( ph /\ ( ch \/ th ) ) <-> ( ( ph /\ ch ) \/ ( ph /\ th ) ) ) |
|
| 3 | andi | |- ( ( ps /\ ( ch \/ th ) ) <-> ( ( ps /\ ch ) \/ ( ps /\ th ) ) ) |
|
| 4 | 2 3 | orbi12i | |- ( ( ( ph /\ ( ch \/ th ) ) \/ ( ps /\ ( ch \/ th ) ) ) <-> ( ( ( ph /\ ch ) \/ ( ph /\ th ) ) \/ ( ( ps /\ ch ) \/ ( ps /\ th ) ) ) ) |
| 5 | 1 4 | bitri | |- ( ( ( ph \/ ps ) /\ ( ch \/ th ) ) <-> ( ( ( ph /\ ch ) \/ ( ph /\ th ) ) \/ ( ( ps /\ ch ) \/ ( ps /\ th ) ) ) ) |