This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of a successor. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmop1 | |- ( N e. NN0 -> ( #p ` ( N + 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 2 | prmoval | |- ( ( N + 1 ) e. NN0 -> ( #p ` ( N + 1 ) ) = prod_ k e. ( 1 ... ( N + 1 ) ) if ( k e. Prime , k , 1 ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN0 -> ( #p ` ( N + 1 ) ) = prod_ k e. ( 1 ... ( N + 1 ) ) if ( k e. Prime , k , 1 ) ) |
| 4 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 5 | elnnuz | |- ( ( N + 1 ) e. NN <-> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
|
| 6 | 4 5 | sylib | |- ( N e. NN0 -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 7 | elfzelz | |- ( k e. ( 1 ... ( N + 1 ) ) -> k e. ZZ ) |
|
| 8 | 7 | zcnd | |- ( k e. ( 1 ... ( N + 1 ) ) -> k e. CC ) |
| 9 | 8 | adantl | |- ( ( N e. NN0 /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. CC ) |
| 10 | 1cnd | |- ( ( N e. NN0 /\ k e. ( 1 ... ( N + 1 ) ) ) -> 1 e. CC ) |
|
| 11 | 9 10 | ifcld | |- ( ( N e. NN0 /\ k e. ( 1 ... ( N + 1 ) ) ) -> if ( k e. Prime , k , 1 ) e. CC ) |
| 12 | eleq1 | |- ( k = ( N + 1 ) -> ( k e. Prime <-> ( N + 1 ) e. Prime ) ) |
|
| 13 | id | |- ( k = ( N + 1 ) -> k = ( N + 1 ) ) |
|
| 14 | 12 13 | ifbieq1d | |- ( k = ( N + 1 ) -> if ( k e. Prime , k , 1 ) = if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) |
| 15 | 6 11 14 | fprodm1 | |- ( N e. NN0 -> prod_ k e. ( 1 ... ( N + 1 ) ) if ( k e. Prime , k , 1 ) = ( prod_ k e. ( 1 ... ( ( N + 1 ) - 1 ) ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) ) |
| 16 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 17 | pncan1 | |- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
|
| 18 | 16 17 | syl | |- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
| 19 | 18 | oveq2d | |- ( N e. NN0 -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
| 20 | 19 | prodeq1d | |- ( N e. NN0 -> prod_ k e. ( 1 ... ( ( N + 1 ) - 1 ) ) if ( k e. Prime , k , 1 ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) |
| 21 | 20 | oveq1d | |- ( N e. NN0 -> ( prod_ k e. ( 1 ... ( ( N + 1 ) - 1 ) ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) ) |
| 22 | prmoval | |- ( N e. NN0 -> ( #p ` N ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) |
|
| 23 | 22 | eqcomd | |- ( N e. NN0 -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) = ( #p ` N ) ) |
| 24 | 23 | adantl | |- ( ( ( N + 1 ) e. Prime /\ N e. NN0 ) -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) = ( #p ` N ) ) |
| 25 | 24 | oveq1d | |- ( ( ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. ( N + 1 ) ) = ( ( #p ` N ) x. ( N + 1 ) ) ) |
| 26 | iftrue | |- ( ( N + 1 ) e. Prime -> if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) = ( N + 1 ) ) |
|
| 27 | 26 | oveq2d | |- ( ( N + 1 ) e. Prime -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. ( N + 1 ) ) ) |
| 28 | iftrue | |- ( ( N + 1 ) e. Prime -> if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) = ( ( #p ` N ) x. ( N + 1 ) ) ) |
|
| 29 | 27 28 | eqeq12d | |- ( ( N + 1 ) e. Prime -> ( ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) <-> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. ( N + 1 ) ) = ( ( #p ` N ) x. ( N + 1 ) ) ) ) |
| 30 | 29 | adantr | |- ( ( ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) <-> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. ( N + 1 ) ) = ( ( #p ` N ) x. ( N + 1 ) ) ) ) |
| 31 | 25 30 | mpbird | |- ( ( ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) ) |
| 32 | fzfid | |- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
|
| 33 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 34 | 1nn | |- 1 e. NN |
|
| 35 | 34 | a1i | |- ( k e. ( 1 ... N ) -> 1 e. NN ) |
| 36 | 33 35 | ifcld | |- ( k e. ( 1 ... N ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 37 | 36 | adantl | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 38 | 32 37 | fprodnncl | |- ( N e. NN0 -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) e. NN ) |
| 39 | 38 | nncnd | |- ( N e. NN0 -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) e. CC ) |
| 40 | 39 | adantl | |- ( ( -. ( N + 1 ) e. Prime /\ N e. NN0 ) -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) e. CC ) |
| 41 | 40 | mulridd | |- ( ( -. ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. 1 ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) |
| 42 | 22 | adantl | |- ( ( -. ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( #p ` N ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) |
| 43 | 41 42 | eqtr4d | |- ( ( -. ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. 1 ) = ( #p ` N ) ) |
| 44 | iffalse | |- ( -. ( N + 1 ) e. Prime -> if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) = 1 ) |
|
| 45 | 44 | oveq2d | |- ( -. ( N + 1 ) e. Prime -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. 1 ) ) |
| 46 | iffalse | |- ( -. ( N + 1 ) e. Prime -> if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) = ( #p ` N ) ) |
|
| 47 | 45 46 | eqeq12d | |- ( -. ( N + 1 ) e. Prime -> ( ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) <-> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. 1 ) = ( #p ` N ) ) ) |
| 48 | 47 | adantr | |- ( ( -. ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) <-> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. 1 ) = ( #p ` N ) ) ) |
| 49 | 43 48 | mpbird | |- ( ( -. ( N + 1 ) e. Prime /\ N e. NN0 ) -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) ) |
| 50 | 31 49 | pm2.61ian | |- ( N e. NN0 -> ( prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) ) |
| 51 | 21 50 | eqtrd | |- ( N e. NN0 -> ( prod_ k e. ( 1 ... ( ( N + 1 ) - 1 ) ) if ( k e. Prime , k , 1 ) x. if ( ( N + 1 ) e. Prime , ( N + 1 ) , 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) ) |
| 52 | 3 15 51 | 3eqtrd | |- ( N e. NN0 -> ( #p ` ( N + 1 ) ) = if ( ( N + 1 ) e. Prime , ( ( #p ` N ) x. ( N + 1 ) ) , ( #p ` N ) ) ) |