This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the primorial function expressed recursively. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmonn2 | |- ( N e. NN -> ( #p ` N ) = if ( N e. Prime , ( ( #p ` ( N - 1 ) ) x. N ) , ( #p ` ( N - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 2 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 3 | 1 2 | syl | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 4 | 3 | eqcomd | |- ( N e. NN -> N = ( ( N - 1 ) + 1 ) ) |
| 5 | 4 | fveq2d | |- ( N e. NN -> ( #p ` N ) = ( #p ` ( ( N - 1 ) + 1 ) ) ) |
| 6 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 7 | prmop1 | |- ( ( N - 1 ) e. NN0 -> ( #p ` ( ( N - 1 ) + 1 ) ) = if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) ) |
|
| 8 | 6 7 | syl | |- ( N e. NN -> ( #p ` ( ( N - 1 ) + 1 ) ) = if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) ) |
| 9 | 3 | eleq1d | |- ( N e. NN -> ( ( ( N - 1 ) + 1 ) e. Prime <-> N e. Prime ) ) |
| 10 | 3 | oveq2d | |- ( N e. NN -> ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( #p ` ( N - 1 ) ) x. N ) ) |
| 11 | 9 10 | ifbieq1d | |- ( N e. NN -> if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) = if ( N e. Prime , ( ( #p ` ( N - 1 ) ) x. N ) , ( #p ` ( N - 1 ) ) ) ) |
| 12 | 5 8 11 | 3eqtrd | |- ( N e. NN -> ( #p ` N ) = if ( N e. Prime , ( ( #p ` ( N - 1 ) ) x. N ) , ( #p ` ( N - 1 ) ) ) ) |