This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of 3. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmo3 | |- ( #p ` 3 ) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn | |- 3 e. NN |
|
| 2 | prmonn2 | |- ( 3 e. NN -> ( #p ` 3 ) = if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( #p ` 3 ) = if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) |
| 4 | 3prm | |- 3 e. Prime |
|
| 5 | 4 | iftruei | |- if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) = ( ( #p ` ( 3 - 1 ) ) x. 3 ) |
| 6 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 7 | 6 | fveq2i | |- ( #p ` ( 3 - 1 ) ) = ( #p ` 2 ) |
| 8 | prmo2 | |- ( #p ` 2 ) = 2 |
|
| 9 | 7 8 | eqtri | |- ( #p ` ( 3 - 1 ) ) = 2 |
| 10 | 9 | oveq1i | |- ( ( #p ` ( 3 - 1 ) ) x. 3 ) = ( 2 x. 3 ) |
| 11 | 3cn | |- 3 e. CC |
|
| 12 | 2cn | |- 2 e. CC |
|
| 13 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
| 14 | 11 12 13 | mulcomli | |- ( 2 x. 3 ) = 6 |
| 15 | 10 14 | eqtri | |- ( ( #p ` ( 3 - 1 ) ) x. 3 ) = 6 |
| 16 | 5 15 | eqtri | |- if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) = 6 |
| 17 | 3 16 | eqtri | |- ( #p ` 3 ) = 6 |