This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of 2. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmo2 | |- ( #p ` 2 ) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | |- 2 e. NN |
|
| 2 | prmonn2 | |- ( 2 e. NN -> ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) |
| 4 | 2prm | |- 2 e. Prime |
|
| 5 | 4 | iftruei | |- if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = ( ( #p ` ( 2 - 1 ) ) x. 2 ) |
| 6 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 7 | 6 | fveq2i | |- ( #p ` ( 2 - 1 ) ) = ( #p ` 1 ) |
| 8 | prmo1 | |- ( #p ` 1 ) = 1 |
|
| 9 | 7 8 | eqtri | |- ( #p ` ( 2 - 1 ) ) = 1 |
| 10 | 9 | oveq1i | |- ( ( #p ` ( 2 - 1 ) ) x. 2 ) = ( 1 x. 2 ) |
| 11 | 2cn | |- 2 e. CC |
|
| 12 | 11 | mullidi | |- ( 1 x. 2 ) = 2 |
| 13 | 10 12 | eqtri | |- ( ( #p ` ( 2 - 1 ) ) x. 2 ) = 2 |
| 14 | 5 13 | eqtri | |- if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = 2 |
| 15 | 3 14 | eqtri | |- ( #p ` 2 ) = 2 |