This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of 3. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmo3 | ⊢ ( #p ‘ 3 ) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn | ⊢ 3 ∈ ℕ | |
| 2 | prmonn2 | ⊢ ( 3 ∈ ℕ → ( #p ‘ 3 ) = if ( 3 ∈ ℙ , ( ( #p ‘ ( 3 − 1 ) ) · 3 ) , ( #p ‘ ( 3 − 1 ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 3 ) = if ( 3 ∈ ℙ , ( ( #p ‘ ( 3 − 1 ) ) · 3 ) , ( #p ‘ ( 3 − 1 ) ) ) |
| 4 | 3prm | ⊢ 3 ∈ ℙ | |
| 5 | 4 | iftruei | ⊢ if ( 3 ∈ ℙ , ( ( #p ‘ ( 3 − 1 ) ) · 3 ) , ( #p ‘ ( 3 − 1 ) ) ) = ( ( #p ‘ ( 3 − 1 ) ) · 3 ) |
| 6 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 7 | 6 | fveq2i | ⊢ ( #p ‘ ( 3 − 1 ) ) = ( #p ‘ 2 ) |
| 8 | prmo2 | ⊢ ( #p ‘ 2 ) = 2 | |
| 9 | 7 8 | eqtri | ⊢ ( #p ‘ ( 3 − 1 ) ) = 2 |
| 10 | 9 | oveq1i | ⊢ ( ( #p ‘ ( 3 − 1 ) ) · 3 ) = ( 2 · 3 ) |
| 11 | 3cn | ⊢ 3 ∈ ℂ | |
| 12 | 2cn | ⊢ 2 ∈ ℂ | |
| 13 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 14 | 11 12 13 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
| 15 | 10 14 | eqtri | ⊢ ( ( #p ‘ ( 3 − 1 ) ) · 3 ) = 6 |
| 16 | 5 15 | eqtri | ⊢ if ( 3 ∈ ℙ , ( ( #p ‘ ( 3 − 1 ) ) · 3 ) , ( #p ‘ ( 3 − 1 ) ) ) = 6 |
| 17 | 3 16 | eqtri | ⊢ ( #p ‘ 3 ) = 6 |