This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of 1. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmo1 | |- ( #p ` 1 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | |- 1 e. NN0 |
|
| 2 | prmoval | |- ( 1 e. NN0 -> ( #p ` 1 ) = prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) ) |
|
| 3 | 1 2 | ax-mp | |- ( #p ` 1 ) = prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) |
| 4 | 1z | |- 1 e. ZZ |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | 1nprm | |- -. 1 e. Prime |
|
| 7 | eleq1 | |- ( k = 1 -> ( k e. Prime <-> 1 e. Prime ) ) |
|
| 8 | 6 7 | mtbiri | |- ( k = 1 -> -. k e. Prime ) |
| 9 | 8 | iffalsed | |- ( k = 1 -> if ( k e. Prime , k , 1 ) = 1 ) |
| 10 | 9 | fprod1 | |- ( ( 1 e. ZZ /\ 1 e. CC ) -> prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) = 1 ) |
| 11 | 4 5 10 | mp2an | |- prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) = 1 |
| 12 | 3 11 | eqtri | |- ( #p ` 1 ) = 1 |