This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmexpb | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( Q ^ N ) <-> ( P = Q /\ M = N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 2 | 1 | adantr | |- ( ( P e. Prime /\ Q e. Prime ) -> P e. ZZ ) |
| 3 | 2 | 3ad2ant1 | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. ZZ ) |
| 4 | simp2l | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M e. NN ) |
|
| 5 | iddvdsexp | |- ( ( P e. ZZ /\ M e. NN ) -> P || ( P ^ M ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P || ( P ^ M ) ) |
| 7 | breq2 | |- ( ( P ^ M ) = ( Q ^ N ) -> ( P || ( P ^ M ) <-> P || ( Q ^ N ) ) ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( P ^ M ) <-> P || ( Q ^ N ) ) ) |
| 9 | simp1l | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. Prime ) |
|
| 10 | simp1r | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> Q e. Prime ) |
|
| 11 | simp2r | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> N e. NN ) |
|
| 12 | prmdvdsexpb | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
|
| 13 | 9 10 11 12 | syl3anc | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
| 14 | 8 13 | bitrd | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( P ^ M ) <-> P = Q ) ) |
| 15 | 6 14 | mpbid | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P = Q ) |
| 16 | 3 | zred | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. RR ) |
| 17 | 4 | nnzd | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M e. ZZ ) |
| 18 | 11 | nnzd | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> N e. ZZ ) |
| 19 | prmgt1 | |- ( P e. Prime -> 1 < P ) |
|
| 20 | 19 | ad2antrr | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> 1 < P ) |
| 21 | 20 | 3adant3 | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> 1 < P ) |
| 22 | simp3 | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ M ) = ( Q ^ N ) ) |
|
| 23 | 15 | oveq1d | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ N ) = ( Q ^ N ) ) |
| 24 | 22 23 | eqtr4d | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ M ) = ( P ^ N ) ) |
| 25 | 16 17 18 21 24 | expcand | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M = N ) |
| 26 | 15 25 | jca | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P = Q /\ M = N ) ) |
| 27 | 26 | 3expia | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( Q ^ N ) -> ( P = Q /\ M = N ) ) ) |
| 28 | oveq12 | |- ( ( P = Q /\ M = N ) -> ( P ^ M ) = ( Q ^ N ) ) |
|
| 29 | 27 28 | impbid1 | |- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( Q ^ N ) <-> ( P = Q /\ M = N ) ) ) |