This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A power of an extended metric space is an extended metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwsms.y | |- Y = ( R ^s I ) |
|
| Assertion | pwsxms | |- ( ( R e. *MetSp /\ I e. Fin ) -> Y e. *MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsms.y | |- Y = ( R ^s I ) |
|
| 2 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 3 | 1 2 | pwsval | |- ( ( R e. *MetSp /\ I e. Fin ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 4 | fvexd | |- ( ( R e. *MetSp /\ I e. Fin ) -> ( Scalar ` R ) e. _V ) |
|
| 5 | simpr | |- ( ( R e. *MetSp /\ I e. Fin ) -> I e. Fin ) |
|
| 6 | fconst6g | |- ( R e. *MetSp -> ( I X. { R } ) : I --> *MetSp ) |
|
| 7 | 6 | adantr | |- ( ( R e. *MetSp /\ I e. Fin ) -> ( I X. { R } ) : I --> *MetSp ) |
| 8 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 9 | 8 | prdsxms | |- ( ( ( Scalar ` R ) e. _V /\ I e. Fin /\ ( I X. { R } ) : I --> *MetSp ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. *MetSp ) |
| 10 | 4 5 7 9 | syl3anc | |- ( ( R e. *MetSp /\ I e. Fin ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. *MetSp ) |
| 11 | 3 10 | eqeltrd | |- ( ( R e. *MetSp /\ I e. Fin ) -> Y e. *MetSp ) |