This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sosn | |- ( Rel R -> ( R Or { A } <-> -. A R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni | |- ( x e. { A } -> x = A ) |
|
| 2 | elsni | |- ( y e. { A } -> y = A ) |
|
| 3 | 2 | eqcomd | |- ( y e. { A } -> A = y ) |
| 4 | 1 3 | sylan9eq | |- ( ( x e. { A } /\ y e. { A } ) -> x = y ) |
| 5 | 4 | 3mix2d | |- ( ( x e. { A } /\ y e. { A } ) -> ( x R y \/ x = y \/ y R x ) ) |
| 6 | 5 | rgen2 | |- A. x e. { A } A. y e. { A } ( x R y \/ x = y \/ y R x ) |
| 7 | df-so | |- ( R Or { A } <-> ( R Po { A } /\ A. x e. { A } A. y e. { A } ( x R y \/ x = y \/ y R x ) ) ) |
|
| 8 | 6 7 | mpbiran2 | |- ( R Or { A } <-> R Po { A } ) |
| 9 | posn | |- ( Rel R -> ( R Po { A } <-> -. A R A ) ) |
|
| 10 | 8 9 | bitrid | |- ( Rel R -> ( R Or { A } <-> -. A R A ) ) |