This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnpcan2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( B + C ) ) = ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | |- ( ( A e. CC /\ C e. CC ) -> ( A + C ) = ( C + A ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + C ) = ( C + A ) ) |
| 3 | addcom | |- ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
|
| 4 | 3 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
| 5 | 2 4 | oveq12d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( B + C ) ) = ( ( C + A ) - ( C + B ) ) ) |
| 6 | pnpcan | |- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( ( C + A ) - ( C + B ) ) = ( A - B ) ) |
|
| 7 | 6 | 3coml | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C + A ) - ( C + B ) ) = ( A - B ) ) |
| 8 | 5 7 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( B + C ) ) = ( A - B ) ) |