This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| ply1scl.a | |- A = ( algSc ` P ) |
||
| ply1sclid.k | |- K = ( Base ` R ) |
||
| ply1sclf1.b | |- B = ( Base ` P ) |
||
| Assertion | ply1sclf1 | |- ( R e. Ring -> A : K -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scl.a | |- A = ( algSc ` P ) |
|
| 3 | ply1sclid.k | |- K = ( Base ` R ) |
|
| 4 | ply1sclf1.b | |- B = ( Base ` P ) |
|
| 5 | 1 2 3 4 | ply1sclf | |- ( R e. Ring -> A : K --> B ) |
| 6 | fveq2 | |- ( ( A ` x ) = ( A ` y ) -> ( coe1 ` ( A ` x ) ) = ( coe1 ` ( A ` y ) ) ) |
|
| 7 | 6 | fveq1d | |- ( ( A ` x ) = ( A ` y ) -> ( ( coe1 ` ( A ` x ) ) ` 0 ) = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) |
| 8 | 1 2 3 | ply1sclid | |- ( ( R e. Ring /\ x e. K ) -> x = ( ( coe1 ` ( A ` x ) ) ` 0 ) ) |
| 9 | 8 | adantrr | |- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> x = ( ( coe1 ` ( A ` x ) ) ` 0 ) ) |
| 10 | 1 2 3 | ply1sclid | |- ( ( R e. Ring /\ y e. K ) -> y = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) |
| 11 | 10 | adantrl | |- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> y = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) |
| 12 | 9 11 | eqeq12d | |- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> ( x = y <-> ( ( coe1 ` ( A ` x ) ) ` 0 ) = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) ) |
| 13 | 7 12 | imbitrrid | |- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> ( ( A ` x ) = ( A ` y ) -> x = y ) ) |
| 14 | 13 | ralrimivva | |- ( R e. Ring -> A. x e. K A. y e. K ( ( A ` x ) = ( A ` y ) -> x = y ) ) |
| 15 | dff13 | |- ( A : K -1-1-> B <-> ( A : K --> B /\ A. x e. K A. y e. K ( ( A ` x ) = ( A ` y ) -> x = y ) ) ) |
|
| 16 | 5 14 15 | sylanbrc | |- ( R e. Ring -> A : K -1-1-> B ) |