This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomials form a subring of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| ply1lss.2 | |- S = ( PwSer1 ` R ) |
||
| ply1lss.u | |- U = ( Base ` P ) |
||
| Assertion | ply1subrg | |- ( R e. Ring -> U e. ( SubRing ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| 2 | ply1lss.2 | |- S = ( PwSer1 ` R ) |
|
| 3 | ply1lss.u | |- U = ( Base ` P ) |
|
| 4 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 5 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 6 | 1 3 | ply1bas | |- U = ( Base ` ( 1o mPoly R ) ) |
| 7 | 1on | |- 1o e. On |
|
| 8 | 7 | a1i | |- ( R e. Ring -> 1o e. On ) |
| 9 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 10 | 4 5 6 8 9 | mplsubrg | |- ( R e. Ring -> U e. ( SubRing ` ( 1o mPwSer R ) ) ) |
| 11 | eqidd | |- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) ) |
|
| 12 | 2 | psr1val | |- S = ( ( 1o ordPwSer R ) ` (/) ) |
| 13 | 0ss | |- (/) C_ ( 1o X. 1o ) |
|
| 14 | 13 | a1i | |- ( R e. Ring -> (/) C_ ( 1o X. 1o ) ) |
| 15 | 4 12 14 | opsrbas | |- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = ( Base ` S ) ) |
| 16 | 4 12 14 | opsrplusg | |- ( R e. Ring -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` S ) ) |
| 17 | 16 | oveqdr | |- ( ( R e. Ring /\ ( x e. ( Base ` ( 1o mPwSer R ) ) /\ y e. ( Base ` ( 1o mPwSer R ) ) ) ) -> ( x ( +g ` ( 1o mPwSer R ) ) y ) = ( x ( +g ` S ) y ) ) |
| 18 | 4 12 14 | opsrmulr | |- ( R e. Ring -> ( .r ` ( 1o mPwSer R ) ) = ( .r ` S ) ) |
| 19 | 18 | oveqdr | |- ( ( R e. Ring /\ ( x e. ( Base ` ( 1o mPwSer R ) ) /\ y e. ( Base ` ( 1o mPwSer R ) ) ) ) -> ( x ( .r ` ( 1o mPwSer R ) ) y ) = ( x ( .r ` S ) y ) ) |
| 20 | 11 15 17 19 | subrgpropd | |- ( R e. Ring -> ( SubRing ` ( 1o mPwSer R ) ) = ( SubRing ` S ) ) |
| 21 | 10 20 | eleqtrd | |- ( R e. Ring -> U e. ( SubRing ` S ) ) |