This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| ply1val.2 | |- S = ( PwSer1 ` R ) |
||
| Assertion | ply1val | |- P = ( S |`s ( Base ` ( 1o mPoly R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| 2 | ply1val.2 | |- S = ( PwSer1 ` R ) |
|
| 3 | fveq2 | |- ( r = R -> ( PwSer1 ` r ) = ( PwSer1 ` R ) ) |
|
| 4 | 3 2 | eqtr4di | |- ( r = R -> ( PwSer1 ` r ) = S ) |
| 5 | oveq2 | |- ( r = R -> ( 1o mPoly r ) = ( 1o mPoly R ) ) |
|
| 6 | 5 | fveq2d | |- ( r = R -> ( Base ` ( 1o mPoly r ) ) = ( Base ` ( 1o mPoly R ) ) ) |
| 7 | 4 6 | oveq12d | |- ( r = R -> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) ) |
| 8 | df-ply1 | |- Poly1 = ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) ) |
|
| 9 | ovex | |- ( S |`s ( Base ` ( 1o mPoly R ) ) ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( R e. _V -> ( Poly1 ` R ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) ) |
| 11 | fvprc | |- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
|
| 12 | ress0 | |- ( (/) |`s ( Base ` ( 1o mPoly R ) ) ) = (/) |
|
| 13 | 11 12 | eqtr4di | |- ( -. R e. _V -> ( Poly1 ` R ) = ( (/) |`s ( Base ` ( 1o mPoly R ) ) ) ) |
| 14 | fvprc | |- ( -. R e. _V -> ( PwSer1 ` R ) = (/) ) |
|
| 15 | 2 14 | eqtrid | |- ( -. R e. _V -> S = (/) ) |
| 16 | 15 | oveq1d | |- ( -. R e. _V -> ( S |`s ( Base ` ( 1o mPoly R ) ) ) = ( (/) |`s ( Base ` ( 1o mPoly R ) ) ) ) |
| 17 | 13 16 | eqtr4d | |- ( -. R e. _V -> ( Poly1 ` R ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) ) |
| 18 | 10 17 | pm2.61i | |- ( Poly1 ` R ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) |
| 19 | 1 18 | eqtri | |- P = ( S |`s ( Base ` ( 1o mPoly R ) ) ) |