This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero scalar as a polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1ascl0.w | |- W = ( Poly1 ` R ) |
|
| ply1ascl0.a | |- A = ( algSc ` W ) |
||
| ply1ascl0.o | |- O = ( 0g ` R ) |
||
| ply1ascl0.1 | |- .0. = ( 0g ` W ) |
||
| ply1ascl0.r | |- ( ph -> R e. Ring ) |
||
| Assertion | ply1ascl0 | |- ( ph -> ( A ` O ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ascl0.w | |- W = ( Poly1 ` R ) |
|
| 2 | ply1ascl0.a | |- A = ( algSc ` W ) |
|
| 3 | ply1ascl0.o | |- O = ( 0g ` R ) |
|
| 4 | ply1ascl0.1 | |- .0. = ( 0g ` W ) |
|
| 5 | ply1ascl0.r | |- ( ph -> R e. Ring ) |
|
| 6 | 1 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` W ) ) |
| 7 | 5 6 | syl | |- ( ph -> R = ( Scalar ` W ) ) |
| 8 | 7 | fveq2d | |- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` W ) ) ) |
| 9 | 3 8 | eqtrid | |- ( ph -> O = ( 0g ` ( Scalar ` W ) ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( ( algSc ` W ) ` O ) = ( ( algSc ` W ) ` ( 0g ` ( Scalar ` W ) ) ) ) |
| 11 | eqid | |- ( algSc ` W ) = ( algSc ` W ) |
|
| 12 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 13 | 1 | ply1lmod | |- ( R e. Ring -> W e. LMod ) |
| 14 | 5 13 | syl | |- ( ph -> W e. LMod ) |
| 15 | 1 | ply1ring | |- ( R e. Ring -> W e. Ring ) |
| 16 | 5 15 | syl | |- ( ph -> W e. Ring ) |
| 17 | 11 12 14 16 | ascl0 | |- ( ph -> ( ( algSc ` W ) ` ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` W ) ) |
| 18 | 10 17 | eqtrd | |- ( ph -> ( ( algSc ` W ) ` O ) = ( 0g ` W ) ) |
| 19 | 2 | fveq1i | |- ( A ` O ) = ( ( algSc ` W ) ` O ) |
| 20 | 18 19 4 | 3eqtr4g | |- ( ph -> ( A ` O ) = .0. ) |