This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero scalar as a polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1ascl0.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) | |
| ply1ascl0.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| ply1ascl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | ||
| ply1ascl0.1 | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| ply1ascl0.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | ply1ascl0 | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ascl0.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1ascl0.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 3 | ply1ascl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | |
| 4 | ply1ascl0.1 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | ply1ascl0.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | 3 8 | eqtrid | ⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = ( ( algSc ‘ 𝑊 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 11 | eqid | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 13 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ LMod ) |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 15 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ Ring ) |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 17 | 11 12 14 16 | ascl0 | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 18 | 10 17 | eqtrd | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = ( 0g ‘ 𝑊 ) ) |
| 19 | 2 | fveq1i | ⊢ ( 𝐴 ‘ 𝑂 ) = ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) |
| 20 | 18 19 4 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = 0 ) |