This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltnlt.b | |- B = ( Base ` K ) |
|
| pltnlt.s | |- .< = ( lt ` K ) |
||
| Assertion | pltnlt | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .< Y ) -> -. Y .< X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltnlt.b | |- B = ( Base ` K ) |
|
| 2 | pltnlt.s | |- .< = ( lt ` K ) |
|
| 3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 4 | 1 3 2 | pltnle | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .< Y ) -> -. Y ( le ` K ) X ) |
| 5 | 3 2 | pltle | |- ( ( K e. Poset /\ Y e. B /\ X e. B ) -> ( Y .< X -> Y ( le ` K ) X ) ) |
| 6 | 5 | 3com23 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( Y .< X -> Y ( le ` K ) X ) ) |
| 7 | 6 | adantr | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .< Y ) -> ( Y .< X -> Y ( le ` K ) X ) ) |
| 8 | 4 7 | mtod | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .< Y ) -> -. Y .< X ) |