This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for chained "less than or equal to" and "less than". ( sspsstr analog.) (Contributed by NM, 2-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltletr.b | |- B = ( Base ` K ) |
|
| pltletr.l | |- .<_ = ( le ` K ) |
||
| pltletr.s | |- .< = ( lt ` K ) |
||
| Assertion | plelttr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .< Z ) -> X .< Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltletr.b | |- B = ( Base ` K ) |
|
| 2 | pltletr.l | |- .<_ = ( le ` K ) |
|
| 3 | pltletr.s | |- .< = ( lt ` K ) |
|
| 4 | 1 2 3 | pleval2 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) ) |
| 5 | 4 | 3adant3r3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) ) |
| 6 | 1 3 | plttr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X .< Z ) ) |
| 7 | 6 | expd | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .< Y -> ( Y .< Z -> X .< Z ) ) ) |
| 8 | breq1 | |- ( X = Y -> ( X .< Z <-> Y .< Z ) ) |
|
| 9 | 8 | biimprd | |- ( X = Y -> ( Y .< Z -> X .< Z ) ) |
| 10 | 9 | a1i | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X = Y -> ( Y .< Z -> X .< Z ) ) ) |
| 11 | 7 10 | jaod | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y \/ X = Y ) -> ( Y .< Z -> X .< Z ) ) ) |
| 12 | 5 11 | sylbid | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Y .< Z -> X .< Z ) ) ) |
| 13 | 12 | impd | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .< Z ) -> X .< Z ) ) |