This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoc2 | |- ( ( H e. CH /\ A e. ~H ) -> ( A e. ( _|_ ` H ) <-> ( ( projh ` H ) ` A ) = 0h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( H = if ( H e. CH , H , 0H ) -> ( _|_ ` H ) = ( _|_ ` if ( H e. CH , H , 0H ) ) ) |
|
| 2 | 1 | eleq2d | |- ( H = if ( H e. CH , H , 0H ) -> ( A e. ( _|_ ` H ) <-> A e. ( _|_ ` if ( H e. CH , H , 0H ) ) ) ) |
| 3 | fveq2 | |- ( H = if ( H e. CH , H , 0H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , 0H ) ) ) |
|
| 4 | 3 | fveq1d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( projh ` H ) ` A ) = ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) ) |
| 5 | 4 | eqeq1d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( ( projh ` H ) ` A ) = 0h <-> ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) = 0h ) ) |
| 6 | 2 5 | bibi12d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( A e. ( _|_ ` H ) <-> ( ( projh ` H ) ` A ) = 0h ) <-> ( A e. ( _|_ ` if ( H e. CH , H , 0H ) ) <-> ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) = 0h ) ) ) |
| 7 | eleq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A e. ( _|_ ` if ( H e. CH , H , 0H ) ) <-> if ( A e. ~H , A , 0h ) e. ( _|_ ` if ( H e. CH , H , 0H ) ) ) ) |
|
| 8 | fveqeq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) = 0h <-> ( ( projh ` if ( H e. CH , H , 0H ) ) ` if ( A e. ~H , A , 0h ) ) = 0h ) ) |
|
| 9 | 7 8 | bibi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A e. ( _|_ ` if ( H e. CH , H , 0H ) ) <-> ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) = 0h ) <-> ( if ( A e. ~H , A , 0h ) e. ( _|_ ` if ( H e. CH , H , 0H ) ) <-> ( ( projh ` if ( H e. CH , H , 0H ) ) ` if ( A e. ~H , A , 0h ) ) = 0h ) ) ) |
| 10 | h0elch | |- 0H e. CH |
|
| 11 | 10 | elimel | |- if ( H e. CH , H , 0H ) e. CH |
| 12 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 13 | 11 12 | pjoc2i | |- ( if ( A e. ~H , A , 0h ) e. ( _|_ ` if ( H e. CH , H , 0H ) ) <-> ( ( projh ` if ( H e. CH , H , 0H ) ) ` if ( A e. ~H , A , 0h ) ) = 0h ) |
| 14 | 6 9 13 | dedth2h | |- ( ( H e. CH /\ A e. ~H ) -> ( A e. ( _|_ ` H ) <-> ( ( projh ` H ) ` A ) = 0h ) ) |