This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoc2 | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ⊥ ‘ 𝐻 ) = ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ 𝐴 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) ) |
| 3 | fveq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 4 | 3 | fveq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ) |
| 5 | 4 | eqeq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 0ℎ ↔ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) = 0ℎ ) ) |
| 6 | 2 5 | bibi12d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 0ℎ ) ↔ ( 𝐴 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ↔ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) = 0ℎ ) ) ) |
| 7 | eleq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) ) | |
| 8 | fveqeq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) ) | |
| 9 | 7 8 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ↔ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) = 0ℎ ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ↔ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) ) ) |
| 10 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 11 | 10 | elimel | ⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ∈ Cℋ |
| 12 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 13 | 11 12 | pjoc2i | ⊢ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ↔ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) |
| 14 | 6 9 13 | dedth2h | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 0ℎ ) ) |