This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projector function maps one-to-one into the set of Hilbert space operators. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjmf1 | |- projh : CH -1-1-> ( ~H ^m ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjmfn | |- projh Fn CH |
|
| 2 | pjhf | |- ( x e. CH -> ( projh ` x ) : ~H --> ~H ) |
|
| 3 | ax-hilex | |- ~H e. _V |
|
| 4 | 3 3 | elmap | |- ( ( projh ` x ) e. ( ~H ^m ~H ) <-> ( projh ` x ) : ~H --> ~H ) |
| 5 | 2 4 | sylibr | |- ( x e. CH -> ( projh ` x ) e. ( ~H ^m ~H ) ) |
| 6 | 5 | rgen | |- A. x e. CH ( projh ` x ) e. ( ~H ^m ~H ) |
| 7 | ffnfv | |- ( projh : CH --> ( ~H ^m ~H ) <-> ( projh Fn CH /\ A. x e. CH ( projh ` x ) e. ( ~H ^m ~H ) ) ) |
|
| 8 | 1 6 7 | mpbir2an | |- projh : CH --> ( ~H ^m ~H ) |
| 9 | pj11 | |- ( ( x e. CH /\ y e. CH ) -> ( ( projh ` x ) = ( projh ` y ) <-> x = y ) ) |
|
| 10 | 9 | biimpd | |- ( ( x e. CH /\ y e. CH ) -> ( ( projh ` x ) = ( projh ` y ) -> x = y ) ) |
| 11 | 10 | rgen2 | |- A. x e. CH A. y e. CH ( ( projh ` x ) = ( projh ` y ) -> x = y ) |
| 12 | dff13 | |- ( projh : CH -1-1-> ( ~H ^m ~H ) <-> ( projh : CH --> ( ~H ^m ~H ) /\ A. x e. CH A. y e. CH ( ( projh ` x ) = ( projh ` y ) -> x = y ) ) ) |
|
| 13 | 8 11 12 | mpbir2an | |- projh : CH -1-1-> ( ~H ^m ~H ) |