This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoi0 | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ G C_ ( _|_ ` H ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjrn | |- ( G e. CH -> ran ( projh ` G ) = G ) |
|
| 2 | 1 | adantr | |- ( ( G e. CH /\ H e. CH ) -> ran ( projh ` G ) = G ) |
| 3 | pjrn | |- ( H e. CH -> ran ( projh ` H ) = H ) |
|
| 4 | 3 | fveq2d | |- ( H e. CH -> ( _|_ ` ran ( projh ` H ) ) = ( _|_ ` H ) ) |
| 5 | 4 | adantl | |- ( ( G e. CH /\ H e. CH ) -> ( _|_ ` ran ( projh ` H ) ) = ( _|_ ` H ) ) |
| 6 | 2 5 | sseq12d | |- ( ( G e. CH /\ H e. CH ) -> ( ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) <-> G C_ ( _|_ ` H ) ) ) |
| 7 | 6 | biimpar | |- ( ( ( G e. CH /\ H e. CH ) /\ G C_ ( _|_ ` H ) ) -> ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) |
| 8 | 7 | 3adantl3 | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ G C_ ( _|_ ` H ) ) -> ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) |
| 9 | id | |- ( H e. CH -> H e. CH ) |
|
| 10 | 3 9 | eqeltrd | |- ( H e. CH -> ran ( projh ` H ) e. CH ) |
| 11 | chsh | |- ( ran ( projh ` H ) e. CH -> ran ( projh ` H ) e. SH ) |
|
| 12 | 10 11 | syl | |- ( H e. CH -> ran ( projh ` H ) e. SH ) |
| 13 | 12 | 3ad2ant2 | |- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ran ( projh ` H ) e. SH ) |
| 14 | 13 | adantr | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ran ( projh ` H ) e. SH ) |
| 15 | simpr | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) |
|
| 16 | pjfn | |- ( G e. CH -> ( projh ` G ) Fn ~H ) |
|
| 17 | fnfvelrn | |- ( ( ( projh ` G ) Fn ~H /\ A e. ~H ) -> ( ( projh ` G ) ` A ) e. ran ( projh ` G ) ) |
|
| 18 | 16 17 | sylan | |- ( ( G e. CH /\ A e. ~H ) -> ( ( projh ` G ) ` A ) e. ran ( projh ` G ) ) |
| 19 | 18 | 3adant2 | |- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ( ( projh ` G ) ` A ) e. ran ( projh ` G ) ) |
| 20 | pjfn | |- ( H e. CH -> ( projh ` H ) Fn ~H ) |
|
| 21 | fnfvelrn | |- ( ( ( projh ` H ) Fn ~H /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) |
|
| 22 | 20 21 | sylan | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) |
| 23 | 22 | 3adant1 | |- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) |
| 24 | 19 23 | jca | |- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ( ( ( projh ` G ) ` A ) e. ran ( projh ` G ) /\ ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) ) |
| 25 | 24 | adantr | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ( ( ( projh ` G ) ` A ) e. ran ( projh ` G ) /\ ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) ) |
| 26 | shorth | |- ( ran ( projh ` H ) e. SH -> ( ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) -> ( ( ( ( projh ` G ) ` A ) e. ran ( projh ` G ) /\ ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) ) ) |
|
| 27 | 14 15 25 26 | syl3c | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |
| 28 | 8 27 | syldan | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ G C_ ( _|_ ` H ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |