This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projector function maps one-to-one into the set of Hilbert space operators. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjmf1 | ⊢ projℎ : Cℋ –1-1→ ( ℋ ↑m ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjmfn | ⊢ projℎ Fn Cℋ | |
| 2 | pjhf | ⊢ ( 𝑥 ∈ Cℋ → ( projℎ ‘ 𝑥 ) : ℋ ⟶ ℋ ) | |
| 3 | ax-hilex | ⊢ ℋ ∈ V | |
| 4 | 3 3 | elmap | ⊢ ( ( projℎ ‘ 𝑥 ) ∈ ( ℋ ↑m ℋ ) ↔ ( projℎ ‘ 𝑥 ) : ℋ ⟶ ℋ ) |
| 5 | 2 4 | sylibr | ⊢ ( 𝑥 ∈ Cℋ → ( projℎ ‘ 𝑥 ) ∈ ( ℋ ↑m ℋ ) ) |
| 6 | 5 | rgen | ⊢ ∀ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) ∈ ( ℋ ↑m ℋ ) |
| 7 | ffnfv | ⊢ ( projℎ : Cℋ ⟶ ( ℋ ↑m ℋ ) ↔ ( projℎ Fn Cℋ ∧ ∀ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) ∈ ( ℋ ↑m ℋ ) ) ) | |
| 8 | 1 6 7 | mpbir2an | ⊢ projℎ : Cℋ ⟶ ( ℋ ↑m ℋ ) |
| 9 | pj11 | ⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( ( projℎ ‘ 𝑥 ) = ( projℎ ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 10 | 9 | biimpd | ⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( ( projℎ ‘ 𝑥 ) = ( projℎ ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 11 | 10 | rgen2 | ⊢ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( ( projℎ ‘ 𝑥 ) = ( projℎ ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 12 | dff13 | ⊢ ( projℎ : Cℋ –1-1→ ( ℋ ↑m ℋ ) ↔ ( projℎ : Cℋ ⟶ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( ( projℎ ‘ 𝑥 ) = ( projℎ ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 13 | 8 11 12 | mpbir2an | ⊢ projℎ : Cℋ –1-1→ ( ℋ ↑m ℋ ) |