This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| Assertion | pjinormii | |- ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 4 | 3 | normsqi | |- ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) = ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` A ) ) |
| 5 | 1 3 2 | pjadjii | |- ( ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` A ) ) |
| 6 | 1 2 | pjidmi | |- ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) |
| 7 | 6 | oveq1i | |- ( ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( projh ` H ) ` A ) .ih A ) |
| 8 | 4 5 7 | 3eqtr2ri | |- ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) |