This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 6-Oct-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | |- H e. CH |
|
| Assertion | pjadji | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | |- H e. CH |
|
| 2 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` H ) ` A ) = ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) |
|
| 3 | 2 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` H ) ` A ) .ih B ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) ) |
| 4 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih ( ( projh ` H ) ` B ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) ) |
|
| 5 | 3 4 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) <-> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) ) ) |
| 6 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( B e. ~H , B , 0h ) ) ) |
|
| 7 | fveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( projh ` H ) ` B ) = ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
|
| 8 | 7 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) <-> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) ) |
| 10 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 11 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 12 | 1 10 11 | pjadjii | |- ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
| 13 | 5 9 12 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) ) |